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Abstract: This research focuses on optimal power flow based on probability-constrained, for limiting the constraint
violation chances. The proposed method estimate to model policy-based mechanism and management actions in response
to uncertainty realizations, that encourage to control and mitigate the possible adverse impacts. Power flow analysis and
experiments are carried out for verification of electrical power transfer from generators to user through the grid system
stability, reliability and economics. The simulation is presented on the IEEE 5-bus system, for the generator bids for power
and reserves, the linear cost coefficients are applied. At probabilistic threshold, the results represent the optimal power flow
at various level of risk and various level of incremental operational cost.
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I Introduction

Optimal power flow (OPF) is one of the important static power system calculations [1, 2]. It has broad application in
electrical engineering, including scheduling of generators, loss reduction, congestion management, and expansion planning.
As distributed generation (DG) and controllable loads (e.g., electric vehicles) proliferate, active network management has
been introduced in distribution systems [3]. The, optimal power flow (OPF) is no longer limited to the domain of high
voltage transmission networks and has been gradually investigated for application to distribution networks [4, 5]. The
fundamental model of power flow in distributed network is represented in Figure 1.

Figure 1: Basic Model of Power Flow in Distributed Network

In general, all the input data of optimal power flow (OPF) are deterministic. Governed by nonlinear Kirchhoff’s
laws, such deterministic optimization problems can be solved by many methods, such as successive linear/quadratic
programming [6, 7], trust-region-based methods [8], the Lagrangian Newton method [9] and the interior-point method
[10–12]. However, with increasing internal and external factors of uncertainty, such as the power demand affected by daily
economic activities, power generated by renewable energy, and grid parameters obtained by approximate measurements,
the input data have increasing uncertainty, which challenges conventional deterministic optimal power flow (OPF) models.
The degree of uncertainty for some factors can be reduced, but for most uncontrollable factors, it is very difficult to decrease
the impact of their uncertainty. Hence, optimal power flow (OPF) should be able to manage uncertainties in power flow
performance [13–15].

Most conventional methodologies to address uncertainty are based on probabilistic methods that account for the
variability and stochastic nature of the input data. Current Optimal Power Flow (OPF) research on this topic can
be divided into two categories, probabilistic OPF (P-OPF) and stochastic OPF (S-OPF) [16, 17]. P-OPF is a well-
respected approach for characterizing the output of an implicit function whose inputs are random variables, where the
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cumulant method [18] and the point estimate method [19] are examples of very efficient P-OPF computation. However,
the solution of P-OPF is influenced indirectly by the randomness of input variables, and only the probability distributions
of control variables can be determined. In S-OPF problems, the objective function and constraints are usually described
by probability equations or inequalities, which means that the randomness of input variables can directly impact the
solution [20, 21]. Thus, constraint satisfaction in an uncertain environment can be achieved.

II Related Work

II-A Risk Analysis for Shanghai’s Electric Power System under Multiple Uncertainties

Piao et al. [22] developed a robust interval-fuzzy programming (RIFP) approach for planning electric power systems
(EPS). RIFP can deal with multiple uncertainties expressed as fuzzy-boundary intervals and probability distributions,
but also provide an effective linkage between the pre-regulated policies and the associated corrective actions against
any in-feasibility arising from random outcomes. Then, a RIFP-based municipal-scale electric-power-systems planning
(RIFP-MEP) model is formulated for Shanghai’s EPS to demonstrate its applicability. With the aid of RIFP-MEP
model, solutions under different feasibility degrees have been obtained for supporting the city’s energy supply, electricity
generation, conversion, transmission, utilization, facility-expansion schemes as well as air pollution control. The results
can be used to make compromises among system cost, satisfaction degree, and constraint-violation risk.

The robust interval-fuzzy programming (RIFP) method shows more robust capacities in reflecting multiple uncertainties
and examining system-failure risks through two recourse actions. One of the recourse actions is launched to capture the
notion of risk in stochastic programming; another one is seized the risk of electricity shortage particularly when energy
demand is high.

II-A.1 Robust Optimization

Robust optimization could not only penalize the costs that are above the expected values, but also capture the notion of
risk under uncertainty [23]. In fact, the Robust Optimization (RO) method is a hybrid of stochastic and goal programs,
to balance the tradeoff between the expected recourse costs and the variability of these random values [24]. A general
Robust Optimization (RO) model [25] can be formulated as follows:

min f = CT1
X +

S∑
h=1

phDT2
Y + ρ

S∑
h=1

ph

(
DT2

Y − ph
S∑
h

DT2
Y + 2θh

)
(1)

In the above modeling formulation, the random variables take discrete values with probability levels ph, where h =
1, 2, . . . , s and

∑
ph = 1. The xj and yjh represent the first and second-stage decision variables, respectively; the term

of
(
DT2Y − ph

∑S
h DT2Y + 2θh

)
is a variability measure on the second-stage penalty costs; the nonnegative factor ρ

represents a weight coefficient; the θh is slack variable used for attaining looser constraints. Depending on the value of ρ,
the optimization may favor solutions with a higher expected second-stage cost

∑S
h=1 phDT2Y in exchanging for a lower

variability in the second-stage penalty costs as measured by
(
DT2Y − ph

∑S
h DT2Y + 2θh

)
[26]. When ρ = 0, the Robust

Optimization (RO) model becomes a conventional two-stage stochastic programming (TSP) one (i.e. the objective is only
to minimize the first and second-stage costs); this also implies that the decision makers possess a risk neutral attitude and
would not consider the variability of the uncertain recourse costs. However, when ρ = 1, the decision makers can consider
the variability of the second-stage cost based on a risk-aversive attitude.

II-B Risk Assessment for Power System Operation Planning With High Wind Power
Penetration

Negnevitsky et al. [27] presented a novel risk-assessment approach to quantitative evaluation of the security of a wind
integrated power system for short-term operation planning. A risk index representing both the likelihood and consequences
of contingencies as well as system uncertainties caused by wind power generation (WPG) and load forecasting errors was
used to assess the system security. In the case study presented in the paper, the proposed approach was used to evaluate
operational risks of the nine-bus power system with characteristics similar to the Tasmanian power system. The results
showed that the integration of WPG significantly affected the system operational risk, especially risks associated with
frequency response inadequacy.
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Impacts of different factors including load and wind power generation (WPG) forecasting uncertainties, wind power
penetration levels, and operating reserves on the system security were investigated. It also showed that the proposed ap-
proach could assist system operators in operation planning such as setting constraints for wind generation curtailments and
determining operating reserves. One of the main contributions of this paper is the development of the analytical method
for evaluating risks associated with frequency response inadequacy so that the frequency response adequacy assessment
can be performed simultaneously with the steady-state voltage and overload evaluations in the system operational risk
assessment.

II-B.1 Risk Assessment for Wind Integrated Power Systems

To perform power system risk assessments, a risk index needs to be defined. Since risk refers to “the effect of uncertainty
on objective” and is often expressed in terms of a combination of the consequences of an event and the associated likelihood
of occurrence [28], a risk index can be defined as the sum of products of probabilities and quantified consequences as

Risk =
∑
j

∑
i

P (Ci)× P (Sj)×Q(Ci, Sj) (2)

where,
P (Ci) is the probability of the th contingency,
Ci, P (Sj) is the probability of system operating condition,
Sj and Q(Ci, Sj) is the quantified consequence of the contingency Ci in the operating condition Sj .

An operating condition includes different components, such as load and generation levels, network configuration, and

Figure 2: Simulation Procedure in Risk Assessment for Power System Operation Planning

possible operation measures. Some components are random with a specified probability distribution. The probability of
the operating condition is based on the probability distribution of these components. The quantified consequence can be
determined as the amounts of limit violation, load curtailments, or socio-economic losses due to contingencies, depending
on the purpose of the risk assessment [29].

The simulations (steady-state power flow calculations) were conducted using DIgSILENT PowerFactory. The simula-
tion procedure is presented in Figure 2. Generation-load imbalances are taken care by the generator inertial and governor
responses.
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If the system of interest is part of the large interconnected network, the lost generation will be picked up by a large
number of generating units outside the system’s immediate control area. In this case, the pickup in generation will appear
as an increase in power flow over the tie-line. To represent this situation, we could build a model of our own network, add
an equivalent model of the large neighboring system and place the swing bus in the equivalent system.

II-C Congestion Risk-Aware Unit Commitment with Significant Wind Power Generation

Abedi et al. [30] proposed a risk-aware Unit Commitment (UC) approach with the aim to reach a cost-effective real-time
dispatch while improving the wind power utilization as well as alleviation of transmission congestion. Using the proposed
Line Transfer Margins (LTM), the impact of multi-locational wind power uncertainty and correlation on the transmission
capacity constraint in the UC problem is quantified. Thus, the proposed method can reduce wind integration and forecast
error costs, as the day-ahead committed units and reserve resources are more diverse and power flow dispatch can fittingly
follow the information regarding the uncertainty in wind power forecast by using Line Transfer Margins (LTM) signals.
Demonstrated results and analysis confirm that using this approach outperforms the conventional Unit Commitment
(UC) and Real-Time Dispatch (RTD) framework to enhance the reliability of power system operations with wind power
integration, while leading to more cost-effective power system operation.

Figure 3: Flowchart of conducting Risk-Aware Unit Commitment (UC) with Line Transfer Margins (LTM)

The main purpose of conducting the real-time dispatch process in this work is to examine the efficiency of the proposed
method in reducing the security violations under real-time operation of power system (as shown in Figure 3). Therefore,
the real-time dispatch model herein should be inclusively capable of identification of infeasible cases incurred by the
constraint violations, such as transmission congestion, in advance and provide corrective measures to treat them.

II-D Optimal Power Flow with Renewable Energy Resources including Storage

Reddy et al. [31] tackled the problem of optimal power flow with renewable energy resources and storage by taking into
cognizance uncertainties in wind, solar PV power and load demands during real time. The anticipated real-time mean
adjustment cost that accounts for the wind, solar PV power and load demand uncertainties, is introduced to accomplish
this. Validation of results for a few cases has also been done using Monte Carlo simulation [32].

II-D.1 Real-Time Optimal Power Flow (RT-OPF) Model

Probabilistic real-time optimal power flow (RT-OPF) is used to calculate the mean adjustment cost (MAC), and the
two-point estimate optimal power flow (OPF) is used to solve this RT-OPF problem. This two-point estimate method
(2PEM) uses deterministic OPF. The deterministic and probabilistic RT-OPF models are formulated next.

In this model, the objective is to minimize the deterministic mean adjustment cost (MAC), and is formulated as,

Minimize

NG∑
i=1

CRTi (PDevi) =

NG∑
i=1

CRTi

(∣∣PDA
Gi − PRT

Gi

∣∣) (3)

II-E Transmission Line Overload Risk Assessment for Power Systems With Wind and
Load-Power Generation Correlation

Li et al. [33] presented a method for assessing line overload risk for wind-integrated power systems with the consideration
of wind and load-power generation correlations. Using point estimate method (PEM) for probabilistic load flow (PLF)
calculations, the possibility of line overload can be computed. Combining the possibility with the severity of line overload,
the quantitative risk indices can be obtained.
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II-E.1 Probabilistic Model for Line Overload

The line overload possibility can be measured by the probability distribution of line flows. The probability distribution
can be derived from the probabilistic load flow (PLF) calculation [27]. The output line-flow vectors Z can be expressed
as a function of input random wind power, load, and power generation, as shown in Equation 4, where random vector y
is composed of uncertain wind speed, loads, and power generations in a power system

Z = F (y) (4)

The likelihood index in Equation 5 denotes the cumulative distribution function (CDF) of random variables whose samples
do not satisfy the safety threshold with the confidence level t. With the assumption that line flows follow the normal
distribution, t is the confidence level when random variable samples comply with the “3σ principle” as shown in Equation 6

Lik(Zl) = Pt (Zl /∈ [Zlmin, Zlmax]) (5)

t = P
(
|Zl − E(Zl)| < 3

√
D(Zl)

)
(6)

The cumulative distribution function (CDF) of random variables can be written as Equation 7, where the probability
distribution function (PDF) f(Zl) can be obtained from the results of the probabilistic load flow (PLF) calculation

Pt (Zl /∈ [Zlmin, Zlmax]) =

∫
Zl /∈[Zlmin,Zlmax]

f(Zl)dZl (7)

Figure 4: Severity Function of Line Overload

II-E.2 Severity Model of Line Overload

Severity function is used to uniformly quantify the severity of line overload. Severity function for line overload is related
to the real power flow of a transmission line and is specified for each transmission line. Mean values of the real power flow
as a percentage of the power rating would determine the overload severity of a line. The continuous severity function for
line overload shown in Figure 4 is used in this research. Other severity functions, such as discrete severity functions, may
also be used, and the proposed line overload risk assessment method is still valid [34].

II-E.3 Risk Index of Line Overload

The overload risk index Risk(Zl) of line l Equation 8 is defined as the product of the probability Pt(Zl) and the severity
Se(Zl) of the transmission line overload. Therefore, the line overload risk index of the entire system can be calculated as
Equation 9

Risk(Zl) =

∫ +∞

−∞
Pt(Zl)Se(Zl)dZl (8)

Rall =
∑

Risk(Zl) (9)
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III Proposed Approach

The purpose of an optimal power flow (OPF) is to schedule power system controls to optimize an objective function while
satisfying a set of nonlinear equality/ and inequality constraints. Examples of these equality and inequality constraints
include generation/load balance, bus voltage limits, power flow equations, branch flow limits (including both transmission
line and transformer), active/reactive reserve limits, and limits on all control variables. The following is a simplified
deterministic optimal power flow (OPF) problem with no discrete variables or controls. Risk modeling propose a risk
measure for incorporation in an optimal power flow (OPF).

III-A Probabilistic Uncertainty and Risk Measures

A risk measure should reflect both the probability of an outage and the severity of the resulting operating condition. The
risk related to a specific outage i and line k is expressed as

Rspec
(i,k) := P(i) · S(k|i) (10)

where P(i) is the probability of outage i and S(k|i) is the severity of the operating condition on line k given outage i. This
expression can be seen as the risk-based counterpart of the N − 1 criterion, as it describes the risk for a specific line in
one specific post-contingency state. Using Rspec

(i,k) as a basis, we define:

Rout
(i) :=

Nl∑
k=1

P(i) · S(k|i) (11)

Rline
(k) :=

Nout∑
i=1

P(i) · S(k|i) (12)

Rtot :=

Nout∑
i=1

Nl∑
k=1

P(i) · S(k|i) (13)

Rout
(i) expresses the risk after an outage i, and is obtained by summing the risk of all lines k in this post-contingency state.

Rline
(k) is the risk related to line k, summed over all outages i. Rtot is the total risk in the system, summed over all outages

i and all lines k.
In order to evaluate Equation 10, the outage probabilities P(i) must be estimated, and the severity S(k|i) has to be

defined. We assume that the outage probabilities are calculated a priori (e.g., based on historical data and current weather
conditions [35]) and given as an input to the optimization.

III-B Severity Modeling

To capture different types of risk arising from different levels of post-contingency line loading, we define the severity S(k|i)
as a piece-wise linear function of the line flow. We define four different segments for the severity function. The four
segments are, and correspond to

• Normal load,

• High load,

• Moderate overload which requires remedial actions,

• cascading overload which might lead to a cascading event

For the derivation of the severity function parameters, a system is considered the outage of any l line or m generator such
that the set of contingencies K = L∪G. Although it is restricted itself to those N−1 outages, any other outage situations,
e.g. N − 2 or common mode outages, can be included without any change to the methodology. The post-contingency line
flows on line ij after outage k is denoted by pkij . Mathematically, it is defined as the piecewise linear severity function as
the point-wise maximum over a set of affine functions of the line flow.
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III-C Risk Constraints

Since the risk is modeled based on the post-contingency line flows, we can formulate risk-based constraints for these line
flows. For other quantities, e.g. line flows in normal operation or generator outputs, no risk-based constraints can be
formulated, since no risk level is defined for those quantities.

III-C.1 Formulation of Risk Constraints

Based on the risk measures defined by Equation 10–13, we can formulate constraints to limit the risk:

Rspec := P(i) · S(k|i)
(
P i
l(k)

)
6 R(i) (14)

Rout :=

Nout∑
i=1

P(i) · S(k|i)
(
P i
l(k)

)
6 Rout

(15)

Rline :=

NNl∑
k=1

P(i) · S(k|i)
(
P i
l(k)

)
6 Rline

(16)

Rtot :=

Nout∑
i=1

Nl∑
k=1

P(i) · S(k|i)
(
P i
l(k)

)
6 Rtot

(17)

Equation 14 constrains the risk for each line k to stay below a constant limit Ri after the outage i. Equation 15 limits
the risk of outage i, while Equation 16 limits the risk of line k and Equation 17 limits the total risk in the system.

IV Result Analysis

Power flow capabilities reduces the mean power output by a constant value and allows the power plants to provide
reserves, and output control which enforces a hard threshold on the total power output. The corresponding control and
reserve models were developed and incorporated into an optimal power flow formulation with probability constrains, which
allows for controlling the risk of overloads due to wind fluctuations. Leveraging the convexity, the optimization problem
probabilistic uncertainty is solved. Based on a simulation of the IEEE 5-bus system, power management and control with
known risks can provide substantial cost benefits for power plants with high variability.

IV-A Optimal Power Flow Simulation Overview

For MATLAB simulation of power flow, the following assumption is considered.

• Power flow simulation analysis is very important in planning stages of new networks or addition to existing ones like
adding new generator sites, meeting increase load demand and locating new transmission sites.

• The load flow solution gives the nodal voltages and phase angles and hence the power injection at all the buses and
power flows through interconnecting power channels.

• It is helpful in determining the best location as well as optimal capacity of proposed generating station, substation
and new lines.

• It determines the voltage of the buses. The voltage level at the certain buses must be kept within the closed
tolerances.

• System transmission loss minimizes.

• Economic system operation with respect to fuel cost to generate all the power needed.

• The line flows can be known. The line should not be overloaded, it means, we should not operate the close to their
stability or thermal limits.
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Power flow analysis and studies are applied to ensure that electrical power transfer from generators to consumers through
the grid system is economic, reliable and stable. There are many solution techniques for load flow analysis. The solution
procedures and formulations can be precise or approximate, with values adjusted or unadjusted, intended for either on-
line or off-line application, and designed for either single-case or multiple-case applications. Since an engineer is always
concerned with the cost of products and services, the efficient optimum economic operation and planning of electric power
generation system have always occupied an important position in the electric power industry.

IV-B Simulation Test on IEEE 5-Bus System

The MATLAB simulation is presented on the IEEE 5-bus system, with a few modifications as follows. For the generator
bids for energy and reserves, the linear cost coefficients are used. For power plants, zero marginal cost is assumed.
Although the formulation could be extended to include unit commitment, it is not considered here. Therefore, the
minimum generation output of the conventional generators is set to zero. To obtain a more stressed system state, the
load is increased by a factor of 1.25 and decrease the transmission limits by a factor of 0.75. Power plants are located at

Table 1: IEEE 5-Bus System Input Data

Bus Assumed Generation Load

Code Bus Voltage MW MVARs MV MVARs

1 1.06 + j0.0 0 0 0 0

2 1.0 + j0.0 40 30 20 10

3 1.0 + j0.0 1 1 45 15

4 1.0 + j0.0 2 3 40 5

5 1.0 + j0.0 4 6 60 10

5 different buses throughout the system. The standard deviation of each wind power plant is set to 10% of the forecasted
power output. When considering different levels of wind power penetration, both the forecasted power output and the
standard deviations are scaled by a factor corresponding to the penetration of wind power relative to total system load.
The risk limits are set to 0.1 MW. With the cutting-plane algorithm described above, a solution to the 5-bus system is
obtained within seconds to control and manage power distribution. The Table 1 represents the input data assumed for
IEEE 5-bus system to get generation and load output.

The normal procedure for a load flow study is to assume a balanced system and to use a single-phase representation
equivalent to the positive sequence network. Since there is no mutual coupling, the bus admittance matrix can be formed
by inspection and many of its elements will be zero. The experimental result from MATLAB simulation for magnitudes
of bus voltages graph is represented in Figure 5, similarly the angle of bus voltages graph is represented in Figure 6.

Table 3 represents the output generated values in reference to the magnitude and angle of IEEE 5-bus voltages. The
proposed allows not only to control the system risk level, but also to account for the effect of available remedial measures
during the operational planning process. Through the use of probabilistic risk-based constraints, the post-contingency
line flow limits are set based on which measures are available.

IV-C Probabilistic Risk Analysis

The contingency and line specific risk constraint Rspec
(i,k) ≤ R is used for the risk-based formulations, with R = Rbase.

For the probabilistic formulations, the maximum violation level was set to εJ = 0.05. Figure 7 represents the optimal
power flow at different level of risk and different level of incremental operational cost and at probabilistic threshold. The
resulting risk measure is used to formulate risk-based constraints for the post-contingency line flows. The optimal power
flow formulation is applied to simulation analysis of the IEEE 5-bus system. Limit can be applied at different level of the
risk even when the in-feeds deviate from the forecast. Further, the risk-based formulation allows to choose the desired
risk level, for system security.
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Figure 5: Magnitudes of Bus Voltages Graph
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Figure 6: Angles of Bus Voltages Graph

V Conclusion and Future Work

In this paper, The IEEE 5-bus system is simulated and examined under assessment of probabilistic risk. There are various
techniques to limit operational risk in optimal power flow problems where the constraints are affected by uncertainty. It is
usually challenging to reformulate the stochastic optimization problem into a tractable, deterministic problem. The results
represent the optimal power flow at various level of risk and various level of incremental operational cost at probabilistic
threshold. Through the application of probabilistic risk-based constraints, the post-contingency line power flow limits can
be set based on measures availability. The future scope for this work can be extended with Newton-Raphson method and
Fast Decoupled methods.
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Table 2: Output Power Generation

S.No. Parameter Output

1. The active power generation 1.7639 MW

of Slack bus

2. The reactive power generation 1.7955 MVar

of Slack bus

3. The reactive generation −2.5 MVar

P − |V | bus

4. Number of iteration steps 31

Table 3: Magnitude and Angle Output of Bus Voltages

S.No. Bus Magnitude Bus Angle

1. —V Bus 1— 57.3145 [V] ∠ Bus 1 0 deg

2. —V Bus 2— 55.6488 [V] ∠ Bus 2 4.2922 deg

3. —V Bus 3— 53.9986 [V] ∠ Bus 3 5.4232 deg

4. —V Bus 4— 51.4502 [V] ∠ Bus 4 4.1675 deg

5. —V Bus 5— 42.4267 [V] ∠ Bus 5 1.2213 deg
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Figure 7: Optimal Power Flow at Different Level of Risks
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